Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 904
Filtrar
1.
Nanoscale ; 16(16): 8132-8142, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38568015

RESUMEN

Tip-enhanced Raman spectroscopy (TERS) is an advanced technique to perform local chemical analysis of the surface of a sample through the improvement of the sensitivity and the spatial resolution of Raman spectroscopy by plasmonic enhancement of the electromagnetic signal in correspondence with the nanometer-sized tip of an atomic force microscope (AFM). In this work, TERS is demonstrated to represent an innovative and powerful approach for studying extracellular vesicles, in particular bovine milk-derived extracellular vesicles (mEVs), which are nanostructures with considerable potential in drug delivery and therapeutic applications. Raman spectroscopy has been used to analyze mEVs at the micrometric and sub-micrometric scales to obtain a detailed Raman spectrum in order to identify the 'signature' of mEVs in terms of their characteristic molecular vibrations and, therefore, their chemical compositions. With the ability to improve lateral resolution, TERS has been used to study individual mEVs, demonstrating the possibility of investigating a single mEV selected on the surface of the sample and, moreover, analyzing specific locations on the selected mEV with nanometer lateral resolution. TERS potentially allows one to reveal local differences in the composition of mEVs providing new insights into their structure. Also, thanks to the intrinsic properties of TERS to acquire the signal from only the first few nanometers of the surface, chemical investigation of the lipid membrane in correspondence with the various locations of the selected mEV could be performed by analyzing the peaks of the Raman shift in the relevant range of the spectrum (2800-3000 cm-1). Despite being limited to mEVs, this work demonstrates the potential of TERS in the analysis of extracellular vesicles.


Asunto(s)
Vesículas Extracelulares , Microscopía de Fuerza Atómica , Leche , Espectrometría Raman , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Animales , Bovinos , Leche/química
2.
Artículo en Chino | MEDLINE | ID: mdl-38664026

RESUMEN

Objective: To investigate the effects of gelatin methacrylate anhydride (GelMA) hydrogel loaded with small extracellular vesicles derived from human umbilical cord mesenchymal stem cells (hUCMSCs-sEVs) in the treatment of full-thickness skin defect wounds in mice. Methods: This study was an experimental study. hUCMSCs-sEVs were extracted by ultracentrifugation, their morphology was observed through transmission electron microscope, and the expression of CD9, CD63, tumor susceptibility gene 101 (TSG101), and calnexin was detected by Western blotting. The human umbilical vein endothelial cells (HUVECs), the 3rd and 4th passages of human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs) were all divided into blank control group (routinely cultured) and hUCMSC-sEV group (cultured with the cell supernatant containing hUCMSCs-sEVs). The cell scratch test was performed and the cell migration rates at 6, 12, and 24 h after scratching were calculated, the cell Transwell assay was performed and the number of migration cells at 12 h after culture was calculated, and the proportion of proliferating cells was detected by 5-acetylidene-2'-deoxyuridine and Hoechst staining at 24 h after culture, with sample numbers being all 3. The simple GelMA hydrogel and the GelMA hydrogel loaded with hUCMSCs-sEVs (hereinafter referred to as hUCMSC-sEV/GelMA hydrogel) were prepared. Then the micromorphology of 2 kinds of hydrogels was observed under scanning electron microscope, the distribution of hUCMSCs-sEVs was observed by laser scanning confocal microscope, and the cumulative release rates of hUCMSCs-sEVs at 0 (immediately), 2, 4, 6, 8, 10, and 12 d after soaking hUCMSC-sEV/GelMA hydrogel in phosphate buffer solution (PBS) were measured and calculated by protein colorimetric quantification (n=3). Twenty-four 6-week-old male C57BL/6J mice were divided into PBS group, hUCMSC-sEV alone group, GelMA hydrogel alone group, and hUCMSC-sEV/GelMA hydrogel group according to the random number table, with 6 mice in each group, and after the full-thickness skin defect wounds on the back of mice in each group were produced, the wounds were performed with PBS injection, hUCMSC-sEV suspenson injection, simple GelMA coverage, and hUCMSC-sEV/GelMA hydrogel coverage, respectively. Wound healing was observed on post injury day (PID) 0 (immediately), 4, 8, and 12, and the wound healing rates on PID 4, 8, and 12 were calculated, and the wound tissue was collected on PID 12 for hematoxylin-eosin staining to observe the structure of new tissue, with sample numbers being both 6. Results: The extracted hUCMSCs-sEVs showed a cup-shaped structure and expressed CD9, CD63, and TSG101, but barely expressed calnexin. At 6, 12, and 24 h after scratching, the migration rates of HEKs (with t values of 25.94, 20.98, and 20.04, respectively), HDFs (with t values of 3.18, 5.68, and 4.28, respectively), and HUVECs (with t values of 4.32, 19.33, and 4.00, respectively) in hUCMSC-sEV group were significantly higher than those in blank control group (P<0.05). At 12 h after culture, the numbers of migrated HEKs, HDFs, and HUVECs in hUCMSC-sEV group were 550±23, 235±9, and 856±35, respectively, which were significantly higher than 188±14, 97±6, and 370±32 in blank control group (with t values of 22.95, 23.13, and 17.84, respectively, P<0.05). At 24 h after culture, the proportions of proliferating cells of HEKs, HDFs, and HUVECs in hUCMSC-sEV group were significantly higher than those in blank control group (with t values of 22.00, 13.82, and 32.32, respectively, P<0.05). The inside of simple GelMA hydrogel showed a loose and porous sponge-like structure, and hUCMSCs-sEVs was not observed in it. The hUCMSC-sEV/GelMA hydrogel had the same sponge-like structure, and hUCMSCs-sEVs were uniformly distributed in clumps. The cumulative release rate curve of hUCMSCs-sEVs from hUCMSC-sEV/GelMA hydrogel tended to plateau at 2 d after soaking, and the cumulative release rate of hUCMSCs-sEVs was (59.2±1.8)% at 12 d after soaking. From PID 0 to 12, the wound areas of mice in the 4 groups gradually decreased. On PID 4, 8, and 12, the wound healing rates of mice in hUCMSC-sEV/GelMA hydrogel group were significantly higher than those in the other 3 groups (P<0.05); the wound healing rates of mice in GelMA hydrogel alone group and hUCMSC-sEV alone group were significantly higher than those in PBS group (P<0.05). On PID 8 and 12, the wound healing rates of mice in hUCMSC-sEV alone group were significantly higher than those in GelMA hydrogel alone group (P<0.05). On PID 12, the wounds of mice in hUCMSC-sEV/GelMA hydrogel group showed the best wound epithelization, loose and orderly arrangement of dermal collagen, and the least number of inflammatory cells, while the dense arrangement of dermal collagen and varying degrees of inflammatory cell infiltration were observed in the wounds of mice in the other 3 groups. Conclusions: hUCMSCs-sEVs can promote the migration and proliferation of HEKs, HDFs, and HUVECs which are related to skin wound healing, and slowly release in GelMA hydrogel. The hUCMSC-sEV/GelMA hydrogel as a wound dressing can significantly improve the healing speed of full-thickness skin defect wounds in mice.


Asunto(s)
Vesículas Extracelulares , Gelatina , Hidrogeles , Células Madre Mesenquimatosas , Cordón Umbilical , Cicatrización de Heridas , Animales , Ratones , Humanos , Cordón Umbilical/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Gelatina/química , Hidrogeles/química , Vesículas Extracelulares/química , Cicatrización de Heridas/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Piel/efectos de los fármacos , Piel/lesiones , Piel/patología , Células Endoteliales de la Vena Umbilical Humana , Metacrilatos/química , Proliferación Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos
3.
ACS Sens ; 9(4): 2194-2202, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38621146

RESUMEN

Breast cancer is one of the most diagnosed cancers worldwide. Precise diagnosis and subtyping have important significance for targeted therapy and prognosis prediction of breast cancer. Herein, we design a proximity-guaranteed DNA machine for accurate identification of breast cancer extracellular vesicles (EVs), which is beneficial to explore the subtype features of breast cancer. In our design, two proximity probes are located close on the same EV through specific recognition of coexisting surface biomarkers, thus being ligated with the help of click chemistry. Then, the ligated product initiates the operation of a DNA machine involving catalytic hairpin assembly and clusters of regularly interspaced short palindromic repeats (CRISPR)-Cas12a-mediated trans-cleavage, which finally generates a significant response that enables the identification of EVs expressing both biomarkers. Principle-of-proof studies are performed using EVs derived from the breast cancer cell line BT474 as the models, confirming the high sensitivity and specificity of the DNA machine. When further applied to clinical samples, the DNA machine is shown to be capable of not only distinguishing breast cancer patients with special subtypes but also realizing the tumor staging regarding the disease progression. Therefore, our work may provide new insights into the subtype-based diagnosis of breast cancer as well as identification of more potential therapeutic targets in the future.


Asunto(s)
Neoplasias de la Mama , ADN , Vesículas Extracelulares , Vesículas Extracelulares/química , Humanos , Neoplasias de la Mama/genética , Femenino , ADN/química , ADN/genética , Línea Celular Tumoral , Biomarcadores de Tumor , Sistemas CRISPR-Cas/genética
4.
Anal Chem ; 96(16): 6158-6169, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602477

RESUMEN

Raman spectroscopy has been widely used for label-free biomolecular analysis of cells and tissues for pathological diagnosis in vitro and in vivo. AI technology facilitates disease diagnosis based on Raman spectroscopy, including machine learning (PCA and SVM), manifold learning (UMAP), and deep learning (ResNet and AlexNet). However, it is not clear how to optimize the appropriate AI classification model for different types of Raman spectral data. Here, we selected five representative Raman spectral data sets, including endometrial carcinoma, hepatoma extracellular vesicles, bacteria, melanoma cell, diabetic skin, with different characteristics regarding sample size, spectral data size, Raman shift range, tissue sites, Kullback-Leibler (KL) divergence, and significant Raman shifts (i.e., wavenumbers with significant differences between groups), to explore the performance of different AI models (e.g., PCA-SVM, SVM, UMAP-SVM, ResNet or AlexNet). For data set of large spectral data size, Resnet performed better than PCA-SVM and UMAP. By building data characteristic-assisted AI classification model, we optimized the network parameters (e.g., principal components, activation function, and loss function) of AI model based on data size and KL divergence etc. The accuracy improved from 85.1 to 94.6% for endometrial carcinoma grading, from 77.1 to 90.7% for hepatoma extracellular vesicles detection, from 89.3 to 99.7% for melanoma cell detection, from 88.1 to 97.9% for bacterial identification, from 53.7 to 85.5% for diabetic skin screening, and mean time expense of 5 s.


Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodos , Humanos , Femenino , Neoplasias Endometriales/patología , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/química , Aprendizaje Automático , Melanoma/patología , Melanoma/diagnóstico , Melanoma/clasificación , Vesículas Extracelulares/química , Máquina de Vectores de Soporte , Bacterias/clasificación , Bacterias/aislamiento & purificación , Inteligencia Artificial
5.
Anal Chem ; 96(16): 6321-6328, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38595097

RESUMEN

Small extracellular vesicles (sEVs) are heterogeneous biological nanoparticles (NPs) with wide biomedicine applications. Tracking individual nanoscale sEVs can reveal information that conventional microscopic methods may lack, especially in cellular microenvironments. This usually requires biolabeling to identify single sEVs. Here, we developed a light scattering imaging method based on dark-field technology for label-free nanoparticle diffusion analysis (NDA). Compared with nanoparticle tracking analysis (NTA), our method was shown to determine the diffusion probabilities of a single NP. It was demonstrated that accurate size determination of NPs of 41 and 120 nm in diameter is achieved by purified Brownian motion (pBM), without or within the cell microenvironments. Our pBM method was also shown to obtain a consistent size estimation of the normal and cancerous plasma-derived sEVs without and within cell microenvironments, while cancerous plasma-derived sEVs are statistically smaller than normal ones. Moreover, we showed that the velocity and diffusion coefficient are key parameters for determining the diffusion types of the NPs and sEVs in a cancerous cell microenvironment. Our light scattering-based NDA and pBM methods can be used for size determination of NPs, even in cell microenvironments, and also provide a tool that may be used to analyze sEVs for many biomedical applications.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/química , Humanos , Luz , Nanopartículas/química , Dispersión de Radiación , Microambiente Celular , Tamaño de la Partícula , Difusión , Microambiente Tumoral , Línea Celular Tumoral , Movimiento (Física)
6.
Anal Chim Acta ; 1302: 342473, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38580402

RESUMEN

In the medical field, extracellular vesicles (EVs) are gaining importance as they act as cells mediators. These are phospholipid bilayer vesicles and contain crucial biochemical information about their mother cells being carrier of different biomolecules such as small molecules, proteins, lipids, and nucleic acids. After release into the extracellular matrix, they enter the systemic circulation and can be found in all human biofluids. Since EVs reflect the state of the cell of origin, there is exponential attention as potential source of new circulating biomarkers for liquid biopsy. The use of EVs in clinical practice faces several challenges that need to be addressed: these include the standardization of lysis protocols, the availability of low-cost reagents and the development of analytical tools capable of detecting biomarkers. The process of lysis is a crucial step that can impact all subsequent analyses, towards the development of novel analytical strategies. To aid researchers to support the evolution of measurement science technology, this tutorial review evaluates and discuss the most commonly protocols used to characterize the contents of EVs, including their advantages and disadvantages in terms of experimental procedures, time and equipment. The purpose of this tutorial review is to offer practical guide to researchers which are intended to develop novel analytical approaches. Some of the most significant applications are considered, highlighting their main characteristics divided per mechanism of action. Finally, comprehensive tables which provide an overview at a glance are provided to readers.


Asunto(s)
Vesículas Extracelulares , Ácidos Nucleicos , Humanos , Vesículas Extracelulares/química , Biopsia Líquida/métodos , Biomarcadores/análisis , Ácidos Nucleicos/análisis , Muerte Celular
7.
Sci Rep ; 14(1): 9347, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654096

RESUMEN

Breast cancer, a leading cause of female mortality due to delayed detection owing to asymptomatic nature and limited early diagnostic tools, was investigated using a multi-modal approach. Plasma-derived small EVs from breast cancer patients (BrCa, n = 74) and healthy controls (HC, n = 30) were analyzed. Small EVs (n = 104), isolated through chemical precipitation, underwent characterization via transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Validation involved antibody-based tests (TSG101, CD9, CD81, CD63). Infrared spectra of small EVs were obtained, revealing significant differences in lipid acyl chains, particularly in the C-H stretching of CH3. The study focused on the lipid region (3050-2900 cm-1), identifying peaks (3015 cm-1, 2960 cm-1, 2929 cm-1) as distinctive lipid characteristics. Spectroscopic lipid-to-lipid ratios [(I3015/I2929), (I2960/I2929)] emerged as prominent breast cancer markers. Exploration of protein, nucleic acid, and carbohydrate ratios indicated variations in alpha helices, asymmetric C-H stretching vibrations, and C-O stretching at 1033 cm-1. Principal component analysis (PCA) successfully differentiated BrCa and HC small EVs, and heatmap analysis and receiver operating characteristic (ROC) curve evaluations underscored the discriminatory power of lipid ratios. Notably, (I2960/I2929) exhibited 100% sensitivity and specificity, highlighting its potential as a robust BrCa sEV marker for breast cancer detection.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Vesículas Extracelulares , Lípidos , Espectrofotometría Infrarroja , Humanos , Neoplasias de la Mama/diagnóstico , Femenino , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Lípidos/química , Lípidos/análisis , Espectrofotometría Infrarroja/métodos , Persona de Mediana Edad , Adulto , Anciano
8.
J Mater Chem B ; 12(16): 3840-3856, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38532706

RESUMEN

Liver diseases are classified as acute liver damage and chronic liver disease, with recurring liver damage causing liver fibrosis and progression to cirrhosis and hepatoma. Liver transplantation is the only effective treatment for end-stage liver diseases; therefore, novel therapies are required. Extracellular vesicles (EVs) are endogenous nanocarriers involved in cell-to-cell communication that play important roles in immune regulation, tissue repair and regeneration. Native EVs can potentially be used for various liver diseases owing to their high biocompatibility, low immunogenicity and tissue permeability and engineered EVs with surface modification or cargo loading could further optimize therapeutic effects. In this review, we firstly introduced the mechanisms and effects of native EVs derived from different cells and tissues to treat liver diseases of different etiologies. Additionally, we summarized the possible methods to facilitate liver targeting and improve cargo-loading efficiency. In the treatment of liver disease, the detailed engineered methods and the latest delivery strategies were also discussed. Finally, we pointed out the limitations and challenges of EVs for future development and applications. We hope that this review could provide a useful reference for the development of EVs and promote the clinical translation.


Asunto(s)
Vesículas Extracelulares , Hepatopatías , Humanos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Hepatopatías/terapia , Hepatopatías/patología , Animales
9.
Nanoscale ; 16(16): 7825-7840, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38533676

RESUMEN

Extracellular vesicles (EVs) are natural particles secreted by living cells, which hold significant potential for various therapeutic applications. Native EVs have specific components and structures, allowing them to cross biological barriers, and circulate in vivo for a long time. Native EVs have also been bioengineered to enhance their therapeutic efficacy and targeting affinity. Recently, the therapeutic potential of surface-engineered EVs has been explored in the treatment of tumors, autoimmune diseases, infections and other diseases by ongoing research and clinical trials. In this review, we will introduce the modified methods of engineered EVs, summarize the application of engineered EVs in preclinical and clinical trials, and discuss the opportunities and challenges for the clinical translation of surface-engineered EVs.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Humanos , Animales , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Autoinmunes/terapia , Enfermedades Autoinmunes/metabolismo , Sistemas de Liberación de Medicamentos
10.
Clin Nutr ESPEN ; 60: 333-342, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38479932

RESUMEN

BACKGROUND: Recent studies suggest that proteomic cargo of extracellular vesicles (EVs) may play a role in metabolic improvements following lifestyle interventions. However, the relationship between changes in liver fat and circulating EV-derived protein cargo following intervention remains unexplored. METHODS: The study cohort comprised 18 Latino adolescents with obesity and hepatic steatosis (12 males/6 females; average age 13.3 ± 1.2 y) who underwent a six-month lifestyle intervention. EV size distribution and concentration were determined by light scattering intensity; EV protein composition was characterized by liquid chromatography tandem-mass spectrometry. RESULTS: Average hepatic fat fraction (HFF) decreased 23% by the end of the intervention (12.5% [5.5] to 9.6% [4.9]; P = 0.0077). Mean EV size was smaller post-intervention compared to baseline (120.2 ± 16.4 nm to 128.4 ± 16.5 nm; P = 0.031), although the difference in mean EV concentration (1.1E+09 ± 4.1E+08 particles/mL to 1.1E+09 ± 1.8E+08 particles/mL; P = 0.656)) remained unchanged. A total of 462 proteins were identified by proteomic analysis of plasma-derived EVs from participants pre- and post-intervention, with 113 proteins showing differential abundance (56 higher and 57 lower) between the two timepoints (adj-p <0.05). Pathway analysis revealed enrichment in complement cascade, initial triggering of complement, creation of C4 and C2 activators, and regulation of complement cascade. Hepatocyte-specific EV affinity purification identified 40 proteins with suggestive (p < 0.05) differential abundance between pre- and post-intervention samples. CONCLUSIONS: Circulating EV-derived proteins, particularly those associated with the complement cascade, may contribute to improvements in liver fat in response to lifestyle intervention.


Asunto(s)
Vesículas Extracelulares , Proteómica , Masculino , Femenino , Humanos , Adolescente , Niño , Proteómica/métodos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Cromatografía Liquida , Proteínas/metabolismo , Espectrometría de Masas
11.
Sci Rep ; 14(1): 6791, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514697

RESUMEN

Extracellular vesicles (EVs) released from cells attract interest for their possible role in health and diseases. The detection and characterization of EVs is challenging due to the lack of specialized methodologies. Raman spectroscopy, however, has been suggested as a novel approach for biochemical analysis of EVs. To extract information from the spectra, a novel deep learning architecture is explored as a versatile variant of autoencoders. The proposed architecture considers the frequency range separately from the intensity of the spectra. This enables the model to adapt to the frequency range, rather than requiring that all spectra be pre-processed to the same frequency range as it was trained on. It is demonstrated that the proposed architecture accepts Raman spectra of EVs and lipoproteins from 13 biological sources and from two laboratories. High reconstruction accuracy is maintained despite large variances in frequency range and noise level. It is also shown that the architecture is able to cluster the biological nanoparticles by their Raman spectra and differentiate them by their origin without pre-processing of the spectra or supervision during learning. The model performs label-free differentiation, including separating EVs from activated vs. non-activated blood platelets and EVs/lipoproteins from prostate cancer patients versus non-cancer controls. The differentiation is evaluated by creating a neural network classifier that observes the features extracted by the model to classify the spectra according to their sample origin. The classification reveals a test sensitivity of 92.2 % and selectivity of 92.3 % over 769 measurements from two labs that have different measurement configurations.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Neoplasias de la Próstata , Masculino , Humanos , Vesículas Extracelulares/química , Neoplasias de la Próstata/diagnóstico , Lipoproteínas , Aprendizaje Automático Supervisado , Espectrometría Raman/métodos
12.
Hum Reprod ; 39(4): 658-673, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38335261

RESUMEN

STUDY QUESTION: What is the significance and mechanism of human seminal plasma extracellular vesicles (EVs) in regulating human sperm functions? SUMMARY ANSWER: EV increases the intracellular Ca2+ concentrations [Ca2+]i via extracellular Ca2+ influx by activating CatSper channels, and subsequently modulate human sperm motility, especially hyperactivated motility, which is attributed to both protein and non-protein components in EV. WHAT IS KNOWN ALREADY: EVs are functional regulators of human sperm function, and EV cargoes from normal and asthenozoospermic seminal plasma are different. Pre-fusion of EV with sperm in the acidic and non-physiological sucrose buffer solution could elevate [Ca2+]i in human sperm. CatSper, a principle Ca2+ channel in human sperm, is responsible for the [Ca2+]i regulation when sperm respond to diverse extracellular stimuli. However, the role of CatSper in EV-evoked calcium signaling and its potential physiological significance remain unclear. STUDY DESIGN, SIZE, DURATION: EV isolated from the seminal plasma of normal and asthenozoospermic semen were utilized to investigate the mechanism by which EV regulates calcium signal in human sperm, including the involvement of CatSper and the responsible cargoes in EV. In addition, the clinical application potential of EV and EV protein-derived peptides were also evaluated. This is a laboratory study that went on for more than 5 years and involved more than 200 separate experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen donors were recruited in accordance with the Institutional Ethics Committee on human subjects of the Affiliated Hospital of Nantong University and Jiangxi Maternal and Child Health Hospital. The Flow NanoAnalyzer, western blotting, and transmission electron microscope were used to systematically characterize seminal plasma EV. Sperm [Ca2+]i responses were examined by fluorimetric measurement. The whole-cell patch-clamp technique was performed to record CatSper currents. Sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm hyperactivation was also evaluated by examining their penetration ability in viscous methylcellulose media. Protein and non-protein components in EV were analyzed by liquid chromatography-mass spectrum. The levels of prostaglandins, reactive oxygen species, malonaldehyde, and DNA integrity were detected by commercial kits. MAIN RESULTS AND THE ROLE OF CHANCE: EV increased [Ca2+]i via an extracellular Ca2+ influx, which could be suppressed by a CatSper inhibitor. Also, EV potentiated CatSper currents in human sperm. Furthermore, the EV-in [Ca2+]i increase and CatSper currents were absent in a CatSper-deficient sperm, confirming the crucial role of CatSper in EV induced Ca2+ signaling in human sperm. Both proteins and non-protein components of EV contributed to the increase of [Ca2+]i, which were important for the effects of EV on human sperm. Consequently, EV and its cargos promoted sperm hyperactivated motility. In addition, seminal plasma EV protein-derived peptides, such as NAT1-derived peptide (N-P) and THBS-1-derived peptide (T-P), could activate the sperm calcium signal and enhance sperm function. Interestingly, EV derived from asthenozoospermic semen caused a lower increase of [Ca2+]i than that isolated from normal seminal plasma (N-EV), and N-EV significantly improved sperm motility and function in both asthenozoospermic samples and frozen-thawed sperm. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This was an in vitro study and caution must be taken when extrapolating the physiological relevance to in vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS: Our findings demonstrate that the CatSper-mediated-Ca2+ signaling is involved in EV-modulated sperm function under near physiological conditions, and EV and their derivates are a novel CatSper and sperm function regulators with potential for clinical application. They may be developed to improve sperm motility resulting from low [Ca2+]i response and/or freezing and thawing. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the National Natural Science Foundation of China (32271167), the Social Development Project of Jiangsu Province (BE2022765), the Nantong Social and People's Livelihood Science and Technology Plan (MS22022087), the Basic Science Research Program of Nantong (JC22022086), and the Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC2021543). The authors declare no conflict of interest.


Asunto(s)
Astenozoospermia , Canales de Calcio , Vesículas Extracelulares , Semen , Motilidad Espermática , Humanos , Masculino , Astenozoospermia/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Péptidos/metabolismo , Péptidos/farmacología , Semen/química , Semen/metabolismo , Motilidad Espermática/fisiología , Espermatozoides/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo
13.
STAR Protoc ; 5(1): 102892, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38363686

RESUMEN

Extracellular vesicles (EVs) are complex structures that transport various DNA, RNA, and protein. Recently, new EV secretion mechanisms have been identified through the iron regulatory system in mammalian cells. We revealed that ferroptosis increases EV secretion, which is named ferroptosis-dependent EVs (FedEVs). Here, we describe a step-by-step procedure to isolate GFP-expressing FedEVs for in vitro analysis. The FedEVs are further analyzed by imaging and flow cytometry analysis. For complete details on the use and execution of this protocol, please refer to Ito et al.1.


Asunto(s)
Vesículas Extracelulares , Ferroptosis , Animales , Ferroptosis/genética , Proteínas/metabolismo , Técnicas de Cultivo de Célula , Vesículas Extracelulares/química , Mamíferos
14.
Anal Chem ; 96(8): 3508-3516, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38364051

RESUMEN

Extracellular vesicles (EVs) are cell-derived particles that exhibit diverse sizes, molecular contents, and clinical implications for various diseases depending on their specific subpopulations. However, fractionation of EV subpopulations with high resolution, efficiency, purity, and yield remains an elusive goal due to their diminutive sizes. In this study, we introduce a novel strategy that effectively separates EV subpopulations in a gel-free and label-free manner, using two-dimensional (2D) electrophoresis in a microfluidic artificial sieve. The microfabricated artificial sieve consists of periodically arranged micro-slit-well structures in a 2D array and generates an anisotropic electric field pattern to size fractionate EVs into discrete streams and steer the subpopulations into designated outlets for collection within a minute. Along with fractionating EV subpopulations, contaminants such as free proteins and short nucleic acids can be simultaneously directed to waste outlets, thus accomplishing both size fractionation and purification of EVs with high performance. Our platform offers a simple, rapid, and versatile solution for EV subpopulation isolation, which can potentially facilitate the discovery of biomarkers for specific EV subtypes and the development of EV-based therapeutics.


Asunto(s)
Vesículas Extracelulares , Microfluídica , Vesículas Extracelulares/química , Proteínas/análisis , Electroforesis , Biomarcadores/análisis
15.
ACS Nano ; 18(3): 2500-2519, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38207106

RESUMEN

Glioblastoma is a deadly brain tumor for which there is no cure. The presence of glioblastoma stem-like cells (GSCs) contributes to the heterogeneous nature of the disease and makes developing effective therapies challenging. Glioblastoma cells have been shown to influence their environment by releasing biological nanostructures known as extracellular vesicles (EVs). Here, we investigated the role of GSC-derived nanosized EVs (<200 nm) in glioblastoma heterogeneity, plasticity, and aggressiveness, with a particular focus on their protein, metabolite, and fatty acid content. We showed that conditioned medium and small extracellular vesicles (sEVs) derived from cells of one glioblastoma subtype induced transcriptomic and proteomic changes in cells of another subtype. We found that GSC-derived sEVs are enriched in proteins playing a role in the transmembrane transport of amino acids, carboxylic acids, and organic acids, growth factor binding, and metabolites associated with amino acid, carboxylic acid, and sugar metabolism. This suggests a dual role of GSC-derived sEVs in supplying neighboring GSCs with valuable metabolites and proteins responsible for their transport. Moreover, GSC-derived sEVs were enriched in saturated fatty acids, while their respective cells were high in unsaturated fatty acids, supporting that the loading of biological cargos into sEVs is a highly regulated process and that GSC-derived sEVs could be sources of saturated fatty acids for the maintenance of glioblastoma cell metabolism. Interestingly, sEVs isolated from GSCs of the proneural and mesenchymal subtypes are enriched in specific sets of proteins, metabolites, and fatty acids, suggesting a molecular collaboration between transcriptionally different glioblastoma cells. In summary, this study revealed the complexity of GSC-derived sEVs and unveiled their potential contribution to tumor heterogeneity and critical cellular processes commonly deregulated in glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/patología , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Proteómica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Vesículas Extracelulares/química , Neoplasias Encefálicas/patología
16.
Biol Sex Differ ; 15(1): 10, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273378

RESUMEN

BACKGROUND: Alcohol use disorder (AUD) is one of the most common psychiatric disorders, with the consumption of alcohol considered a leading cause of preventable deaths worldwide. Lipids play a crucial functional role in cell membranes; however, we know little about the role of lipids in extracellular vesicles (EVs) as regulatory molecules and disease biomarkers. METHODS: We employed a sensitive lipidomic strategy to characterize lipid species from the plasma EVs of AUD patients to evaluate functional roles and enzymatic activity networks to improve the knowledge of lipid metabolism after alcohol consumption. We analyzed plasma EV lipids from AUD females and males and healthy individuals to highlight lipids with differential abundance and biologically interpreted lipidomics data using LINEX2, which evaluates enzymatic dysregulation using an enrichment algorithm. RESULTS: Our results show, for the first time, that AUD females exhibited more significant substrate-product changes in lysophosphatidylcholine/phosphatidylcholine lipids and phospholipase/acyltransferase activity, which are potentially linked to cancer progression and neuroinflammation. Conversely, AUD males suffer from dysregulated ceramide and sphingomyelin lipids involving sphingomyelinase, sphingomyelin phosphodiesterase, and sphingomyelin synthase activity, which relates to hepatotoxicity. Notably, the analysis of plasma EVs from AUD females and males demonstrates enrichment of lipid ontology terms associated with "negative intrinsic curvature" and "positive intrinsic curvature", respectively. CONCLUSIONS: Our methodological developments support an improved understanding of lipid metabolism and regulatory mechanisms, which contribute to the identification of novel lipid targets and the discovery of sex-specific clinical biomarkers in AUD.


Alcohol use disorder (AUD) is one of the most common psychiatric disorders, with the consumption of alcohol considered a leading cause of preventable deaths worldwide. Lipids play a crucial functional role in cell membranes; however, we know little about the role of lipids in extracellular vesicles (EVs) as regulatory molecules and disease biomarkers. We employed a sensitive lipidomic strategy to characterize lipid species from the plasma EVs of AUD patients to evaluate functional roles and enzymatic activity networks to improve the knowledge of lipid metabolism after alcohol consumption. We analyzed plasma EV lipids from AUD females and males and healthy individuals to highlight lipids with differential abundance and biologically interpreted lipidomics data using LINEX2, which evaluates enzymatic dysregulation using an enrichment algorithm. Our results show, for the first time, that AUD females exhibited more significant substrate-product changes in lysophosphatidylcholine/phosphatidylcholine lipids and phospholipase/acyltransferase activity, which are potentially linked to cancer progression and neuroinflammation. Conversely, AUD males suffer from dysregulated ceramide and sphingomyelin lipids involving sphingomyelinase, sphingomyelin phosphodiesterase, and sphingomyelin synthase activity, which relates to hepatotoxicity. Notably, the analysis of plasma EVs from AUD females and males demonstrates enrichment of lipid ontology terms associated with "negative intrinsic curvature" and "positive intrinsic curvature", respectively. Our methodological developments support an improved understanding of lipid metabolism and regulatory mechanisms, which contribute to the identification of novel lipid targets and the discovery of sex-specific clinical biomarkers in AUD.


Asunto(s)
Alcoholismo , Vesículas Extracelulares , Masculino , Femenino , Humanos , Lipidómica , Lípidos , Alcoholismo/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Biomarcadores , Consumo de Bebidas Alcohólicas
17.
Adv Protein Chem Struct Biol ; 138: 101-133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38220422

RESUMEN

Extracellular vesicles (EVs) encompass a diverse range of membranous structures derived from cells, including exosomes and microvesicles. These vesicles are present in biological fluids and play vital roles in various physiological and pathological processes. They facilitate intercellular communication by enabling the exchange of proteins, lipids, and genetic material between cells. Understanding the cellular processes that govern EV biology is essential for unraveling their physiological and pathological functions and their potential clinical applications. Despite significant advancements in EV research in recent years, there is still much to learn about these vesicles. The advent of improved mass spectrometry (MS)-based techniques has allowed for a deeper characterization of EV protein composition, providing valuable insights into their roles in different physiological and pathological conditions. In this chapter, we provide an overview of proteomics studies conducted to identify the protein contents of EVs, which contribute to their therapeutic and pathological features. We also provided evidence on the potential of EV proteome contents as biomarkers for early disease diagnosis, progression, and treatment response, as well as factors that influence their composition. Additionally, we discuss the available databases containing information on EV proteome contents, and finally, we highlight the need for further research to pave the way toward their utilization in clinical settings.


Asunto(s)
Exosomas , Vesículas Extracelulares , Exosomas/química , Exosomas/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Medicina de Precisión , Proteoma/metabolismo , Proteómica/métodos
18.
Artículo en Inglés | MEDLINE | ID: mdl-38176095

RESUMEN

Isolation of Extracellular Vesicles (EVs) has been done extensively in the past using ultracentrifugation, a recent shift has been observed towards precipitation, and exosome isolation kits. These methods often co-elute contaminants of similar size and density which makes their detection and downstream applications quite challenging. As well as the EV yield is also compromised in some methodologies due to aggregate formation. In recent reports, size-exclusion chromatography (SEC) is replacing density gradient-based ultracentrifugation as the gold standard of exosome isolation. It outperforms in yield, purity and does not account for any physical damage to the EVs. We have standardized the methodology for an efficient pure yield of homogenous exosomes of size even smaller than 75 nm in Caenorhabditis elegans homogenate. The paper entails the application and optimization of EV isolation by SEC based on previous studies by optimizing bed size and type of sepharose column employed. We propose that this method is economically feasible in comparison with currently available approaches. A comparative study was conducted to investigate the performance of CL-6B in relation to CL-2B and further, this was combined with ultracentrifugation for higher efficacy. The methodology could be introduced in a clinical setting due to its therapeutic potential and scope. The eluted EVs were studied by flow cytometry, nanotracking and characterized for size and morphology.


Asunto(s)
Exosomas , Vesículas Extracelulares , Animales , Caenorhabditis elegans , Vesículas Extracelulares/química , Ultracentrifugación/métodos , Cromatografía en Gel
19.
Biomater Sci ; 12(5): 1131-1150, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38284828

RESUMEN

Extracellular vesicles (EVs) are vesicles with lipid bilayer structures shed from the plasma membrane of cells. Microvesicles (MVs) are a subset of EVs containing proteins, lipids, nucleic acids, and other metabolites. MVs can be produced under specific cell stimulation conditions and isolated by modern separation technology. Due to their tumor homing and large volume, tumor cell-derived microvesicles (TMVs) have attracted interest recently and become excellent delivery carriers for therapeutic vaccines, imaging agents or antitumor drugs. However, preparing sufficient and high-purity TMVs and conducting clinical transformation has become a challenge in this field. In this review, the recent research achievements in the generation, isolation, characterization, modification, and application of TMVs in cancer therapy are reviewed, and the challenges facing therapeutic applications are also highlighted.


Asunto(s)
Micropartículas Derivadas de Células , Vesículas Extracelulares , Neoplasias , Humanos , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patología , Vesículas Extracelulares/química , Neoplasias/tratamiento farmacológico , Membrana Celular
20.
ACS Appl Bio Mater ; 7(2): 827-838, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38227342

RESUMEN

Extracellular vesicles (EVs) have emerged as potential vehicles for targeted drug delivery and diagnostic applications. However, achieving consistent and reliable functionalization of EV membranes remains a challenge. Copper-catalyzed click chemistry, commonly used for EV surface modification, poses limitations due to cytotoxicity and interference with biological systems. To overcome these limitations, we developed a standardized method for functionalizing an EV membrane via copper-free click chemistry. EVs derived from plasma hold immense potential as diagnostic and therapeutic agents. However, the isolation and functionalization of EVs from such a complex biofluid represent considerable challenges. We compared three different EV isolation methods to obtain an EV suspension with an optimal purity/yield ratio, and we identified sucrose cushion ultracentrifugation (sUC) as the ideal protocol. We then optimized the reaction conditions to successfully functionalize the plasma-EV surface through a copper-free click chemistry strategy with a fluorescently labeled azide, used as a proof-of-principle molecule. Click-EVs maintained their identity, size, and, more importantly, capacity to be efficiently taken up by responder tumor cells. Moreover, once internalized, click EVs partially followed the endosomal recycling route. The optimized reaction conditions and characterization techniques presented in this study offer a foundation for future investigations and applications of functionalized EVs in drug delivery, diagnostics, and therapeutics.


Asunto(s)
Química Clic , Vesículas Extracelulares , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares/química , Endosomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...